Active Learning documentation
Getting started
Customization
API Reference
Contributing
open issue
Index
_
|
A
|
B
|
C
|
D
|
E
|
F
|
G
|
H
|
I
|
M
|
O
|
P
|
R
|
S
|
T
|
U
|
V
|
W
_
_checkpoints (tf_al.wrapper.Model attribute)
_config (tf_al.wrapper.Model attribute)
_mode (tf_al.wrapper.Model attribute)
_model (tf_al.wrapper.Model attribute)
_model_type (tf_al.wrapper.Model attribute)
A
ActiveLearningLoop (class in tf_al)
add_dataset_meta() (tf_al.ExperimentSuitMetrics method)
add_experiment_meta() (tf_al.ExperimentSuitMetrics method)
annotate() (tf_al.Oracle method)
(tf_al.Pool method)
B
batch_prediction() (tf_al.wrapper.Model method)
C
check_float_range() (tf_al.Dataset method)
check_int_in_range() (tf_al.Dataset method)
collect() (tf_al.Metrics method)
collect_meta_params() (tf_al.ActiveLearningLoop method)
compile() (tf_al.wrapper.McDropout method)
(tf_al.wrapper.Model method)
D
Dataset (class in tf_al)
disable_batch_norm() (tf_al.wrapper.Model method)
disable_tf_logs() (in module tf_al.utils.tf)
E
evaluate() (tf_al.wrapper.McDropout method)
(tf_al.wrapper.Model method)
expectation() (tf_al.wrapper.McDropout method)
ExperimentSuit (class in tf_al)
ExperimentSuitMetrics (class in tf_al)
F
fit() (tf_al.wrapper.Model method)
G
get_dataset_info() (tf_al.ExperimentSuitMetrics method)
get_experiment_meta() (tf_al.ExperimentSuitMetrics method)
get_indices() (tf_al.Pool method)
get_inputs_by() (tf_al.Pool method)
get_labeled_data() (tf_al.Pool method)
get_labeled_indices() (tf_al.Pool method)
get_length_labeled() (tf_al.Pool method)
get_length_unlabeled() (tf_al.Pool method)
get_model_name() (tf_al.wrapper.Model method)
get_query_fn() (tf_al.wrapper.McDropout method)
(tf_al.wrapper.Model method)
get_split_ratio() (tf_al.Dataset method)
get_targets_by() (tf_al.Pool method)
get_unlabeled_data() (tf_al.Pool method)
get_unlabeled_indices() (tf_al.Pool method)
H
has_labeled() (tf_al.Pool method)
has_next() (tf_al.ActiveLearningLoop method)
has_unlabeled() (tf_al.Pool method)
I
init() (tf_al.Oracle method)
(tf_al.Pool method)
is_done() (tf_al.ActiveLearningLoop method)
is_pseudo() (tf_al.Oracle method)
(tf_al.Pool method)
M
McDropout (class in tf_al.wrapper)
Metrics (class in tf_al)
Model (class in tf_al.wrapper)
module
tf_al.utils.logger
tf_al.utils.tf
O
optimize() (tf_al.wrapper.Model method)
Oracle (class in tf_al)
overwrite() (tf_al.ExperimentSuitMetrics method)
P
percentage_of() (tf_al.Dataset method)
Pool (class in tf_al)
predict() (tf_al.wrapper.Model method)
R
read() (tf_al.ExperimentSuitMetrics method)
(tf_al.Metrics method)
read_meta() (tf_al.ExperimentSuitMetrics method)
reset() (tf_al.wrapper.Model method)
run() (tf_al.ActiveLearningLoop method)
S
set_tf_log_level() (in module tf_al.utils.tf)
setup_growth() (in module tf_al.utils.tf)
setup_logger() (in module tf_al.utils.logger)
start() (tf_al.ExperimentSuit method)
std() (tf_al.wrapper.McDropout method)
step() (tf_al.ActiveLearningLoop method)
T
tf_al.utils.logger
module
tf_al.utils.tf
module
U
unlock() (tf_al.ExperimentSuitMetrics method)
unlock_all() (tf_al.ExperimentSuitMetrics method)
V
variance() (tf_al.wrapper.McDropout method)
W
write() (tf_al.Metrics method)
write_line() (tf_al.ExperimentSuitMetrics method)
write_meta() (tf_al.ExperimentSuitMetrics method)